文章编号: 0258-7025(2009)05-1101-04

基于同轴照明和光栅取样的激光束 准直远场监测系统

刘代中¹ 丁 莉² 高妍琦¹ 朱宝强¹ 朱 俭¹ 彭增云¹ 朱健强¹ 俞立钧² (¹中国科学院上海光学精密机械研究所高功率装置物理联合实验室,上海 201800</sup>) ²上海大学机械制造及自动化学院,上海 200072</sup>)

摘要 利用高功率激光装置空间滤波器小孔成像和取样光栅的衍射,结合插入的负透镜发散激光来同轴照明小 孔,设计出一套新型光路远场监测方案。该方案利用光栅衍射可以灵活取样激光远场,并且在实验平台上进行了 实验验证。实验结果表明,其远场监测系统的准直精度达到小孔直径的1.42%,能够满足准直系统远场调整精度 (小于小孔直径 5%)的要求。

关键词 激光技术;光束准直;光栅;远场 中图分类号 TN247 文献标识码 A doi

doi: 10.3788/CJL20093605.1101

Far-Field Detection System of Laser Beams Alignment Based on Gratings Sampling and On-Axial Illumination

Liu Daizhong¹ Ding Li² Gao Yanqi¹ Zhu Baoqiang¹ Zhu Jian¹ Peng Zengyun¹ Zhu Jianqiang¹ Yu Lijun²

¹National Laboratory on High Power and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

² School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China

Abstract Utilizing the image of spatial filter's pinhole of high power laser systems and diffraction of sample grating, with an insertable negative lens for the pinhole's on-axial illumination, a new system for far-field detection of laser beam is presented. This far-field detection system, which is fully demonstrated on the experimental system, can fully use space through off-axial grating sampling. The experimental results indicate, that the average far-field alignment error is less than 1.42% of spatial filter pinhole diameter, which meets the alignment system requirements (5% of spatial filter pinhole diameter).

Key words laser technique; beam alignment; grating; far-field

1 引 言

激光惯性约束聚变装置是规模最大的一类高功 率激光系统。随着激光聚变技术的迅速发展,光束 口径和路数急剧增多,光路长度和元器件数目成倍 增长,自动准直的要求也越来越高,相应的光束准直 系统的空间却越来越少^[1~7]。为了适应新一代激光 聚变装置对光束准直系统的要求,本文针对装置的 光束远场监测要求,设计出一套优化合理的远场监测方案,能够节省空间排布,并且在实验平台上进行 了充分的实验验证,得到了满意的结果。这种远场 调整方案是利用光栅取样远场成像技术来实现光束 指向(角移)的调整,它可以挂靠在激光装置空间滤 波器侧壁上,使得光束准直系统空间排布更加灵 活^[5]。而远场准直精度也满足高功率激光器总体要

收稿日期: 2008-08-04; 收到修改稿日期: 2008-11-18

基金项目:国家 863 计划(2007SQ804)和中日韩激光聚变高能量密度物理合作研究资助课题。

作者简介:刘代中(1973-),男,副研究员,主要从事高功率激光光束控制与准直方面的研究。

中

求,准直精度达到小孔直径的1.42%。

2 基于同轴照明和光栅取样的远场监测技术

传统的远场探测系统一般都和激光光路同轴, 为了不影响主光路,其位置大多在反射镜后面,通过 反射镜的漏光来取样,如图1所示。主要远场监测 调整步骤:让小孔(Pinhole)被照明,然后使小孔成 像到远场探测器(FFCCD)上。由于小孔面也是激 光束焦面所在位置,这样激光束焦斑也同时成像到 这个远场探测器上,通过比较小孔中心和焦斑中心 的误差,调整空间滤波器前面的反射镜就能使两个 中心重合,实现远场准直调整^[8~13]。

图1 传统远场探测系统

Fig. 1 Traditional far-field detection system

本文介绍的新型远场监测技术则通过光栅离轴 取样,负透镜同轴照明,可以实现离轴的远场监测和 调整。其具体监测光路原理如图 2 所示,远场准直 调整步骤如下:

1)得到远场基准即小孔的中心。首先在小孔 后面紧贴着小孔板放置一透射光栅(Insertable grating)。该光栅尺寸比小孔略大。然后在空间滤 波器(Spatial filter)前面的光路中插入照明负透镜 (Insertable lens),使激光发散同轴照明小孔。通过 光栅的一级或者二级衍射使小孔轮廓通过成像透镜 (Imaging lens)成像到远场探测器(FFCCD),然后 通过计算机的图像处理得到小孔的中心位置。

2)取得激光焦斑的中心。首先移出光路中的 负透镜,这样激光的焦斑穿过小孔,通过光栅的衍 射,同样成像到远场探测器(FFCCD)上,通过图像 处理得到焦斑的中心。

3)使两个中心重合。通过反射镜LM1和 LM2的调整,实现激光的焦斑中心和空间滤波器小 孔中心重合。

该方案适用于在主光路光轴方向上没有空间建 立远场探测系统情况下,可以在空间滤波器的侧壁 设置通过光栅取样的远场探测系统。其优点是可以 实现远场的离轴调整,灵活地在侧壁上挂靠,充分利 用空间滤波器的立体空间。

图 2 光栅取样远场监测系统 Fig. 2 Far-field detection system of grating sampling

3 实验研究

光

3.1 实验方案

针对这种新型的基于同轴照明的光栅取样远场 监测系统,设计了实验方案,该方案对光栅取样远场 监测方法和传统的远场监测方法进行了实验对比验 证。实验方案设计光路如图 3 所示。主要包括两部 分光路,一部分是插入负透镜的光栅远场离轴取样 监测光路,其远场探测器为 FFCCD1;另外一部分是 传统的远场监测系统光路,其远场探测器为 FFCCD2。两个远场探测器均为普通黑白 CCD,感 光面积为6.4 mm×4.8 mm,像素点阵768×576。

3.2 实验步骤

具体的实验步骤为:

 利用传统的远场监测方法使得小孔中心和 激光焦斑中心重合

打开半导体激光器(laser),波长1053 nm,在主光路的空间滤波器前插入照明负透镜使激光照满整个小孔。小孔直径2 mm,厚度0.2 mm,使小孔1:1成像

于 FFCCD2,获取小孔的图像,通过计算机图像处理 方法(阈值法、重心法等)精确计算出小孔的中心^[14]; 再移出照明负透镜,使激光焦斑成像于 FFCCD2。通 过上述的图像处理方法精确计算出焦斑的中心,调整 LM1 或者 LM2 使激光焦斑与小孔中心重合,由于激 光焦斑的抖动,两个中心不可能完全重合,实验把两 个中心重合误差控制在 3 个像素以内。

2)利用基于同轴照明光栅取样远场监测方法 检验小孔中心和焦斑中心是否重合

将视频切换到 FFCCD1,插入光栅(insertable grating)。光栅刻蚀区尺寸须大于小孔尺寸,实验 所用光栅参数:刻蚀区尺寸15 mm×15 mm,透射 光栅255 lines/mm,光栅常数 d 为3.922 μm。为了 使激光一级衍射进入远场探测成像系统,根据透射 式光栅的衍射方程式

$$d(\sin \theta_i + \sin \theta_k) = K \lambda, \qquad (1)$$

式中 θ_i 为入射角度, θ_k 为衍射角度,K为衍射级次, λ 为入射光波长。当取一级衍射时,K为1,远场成 像系统(包括远场探测器 FFCCD1 和成像透镜)和 激光光轴夹角计算为15.58°[arcsin(λ/d)];再插入 照明负透镜,使小孔1:1成像于 FFCCD1 光敏面 上,获取小孔的图像。再通过前面介绍的图像处理 方法精确计算出小孔的中心;移出照明负透镜,使激 光焦斑成像于 FFCCD1,再通过上述的图像处理方 法精确计算出焦斑的中心。结果发现在传统方法调 整小孔和焦斑中心误差小于三个像素的情况下,此 种方法探测得到的小孔和焦斑中心值误差低于四个 像素。

3.3 实验结果

利用实验步骤 1) 即传统远场监测方法得到远

场小孔和焦斑图像如图 4 所示。其中(a)为小孔图像,(b)为焦斑图像;由实验步骤 2)即光栅取样远场监测方法得到的图像如图 5 所示,其中(a)为小孔图像,(b)为焦斑图像。

(a) pinhole

(b) spot

(a) pinhole

(b) spot

图 5 FFCCD1 采集的图像 Fig. 5 Image of FFCCD1

实验室气流、平台蠕动、机械振动等外界因素容 易造成实验误差。为了准确记录小孔中心和焦斑中 心,实验对两种方法的小孔图像、焦斑图像每间隔 10 min记录一组实验数据,然后通过计算机图像处 理得到中心像素坐标值,共记录 10 次,如表 1 所示。 传统远场监测方法得到的小孔中心坐标像素平均值 为(470,348)、焦斑中心坐标像素为(468.1,346.8), 中心坐标像素误差为2.25 pixel,按1:1成像计算两

		-		
Far-field detector	FFCCD2		FFCCD1	
	Pinhole center	Spot center	Pinhole center	Spot center
Coordinate/pixel	(470,348)	(468,346)	(402,327)	(406,325)
	(470,348)	(468,346)	(402,326)	(406,325)
	(470,348)	(468,346)	(402,327)	(406,325)
	(470,348)	(468,346)	(402,326)	(406,324)
	(470,348)	(468,347)	(402,326)	(406,325)
	(470,348)	(468,347)	(402,326)	(406,325)
	(470,348)	(470,348)	(402,327)	(406,325)
	(470,348)	(469,349)	(402,326)	(406,325)
	(470,348)	(469,346)	(402,327)	(406,326)
	(470,348)	(467,347)	(402,327)	(406,326)
Average value/pixel	(470,348)	(468.1,346.8)	(402,326.5)	(405.2,325.1)
Center space/pixel	2.25		3.42	

表 1 实验数据 Table 1 Experimental data

激

光

中

个中心实际间距为18.7 μm; 而光栅取样远场监测 方法得到的小孔中心坐标像素平均值为 (402,326.5), 焦斑中心坐标像素为(405.2,325.1), 中心坐标像素误差为3.42, 按1:1成像计算两个中 心实际间距为28.42 μm, 误差为小孔直径1.42%, 而激光器远场调整精度总体要求为小孔直径5%, 两种方法所得误差为1.17 pixel, 实际间距为 9.72 μm。由此可以看出, 在利用传统远场监测方 法是焦斑中心和小孔中心基本重合的条件下, 光栅 取样远场监测方法得到的焦斑中心和小孔中心也基 本重合, 其误差小于激光器远场调整精度总体要求。

4 结论

本文充分考虑到高功率激光装置远场探测系统 在空间上灵活排布的需求,对基于同轴照明光栅衍 射成像的远场探测系统进行了原理分析和实验验 证。结果表明,相对传统的远场监测方法,该新型远 场监测系统通过侧面离轴光栅取样灵活利用空间, 其调整平均误差为空间滤波器小孔直径1.42%,能 够满足准直系统远场调整精度(小于小孔直径5%) 的要求。

参考文献

1 Sun Zhihong, Peng Zhitao, Liu Hua et al.. Calculated methods of high power laser near field parameters[J]. Chinese J. Lasers, 2008, 35(4):544~548

孙志红,彭志涛,刘 华等.高功率激光近场空域计算方法[J]. 中国激光,2008,35(4):544~548

2 Yu Yongai, Zhang Lingling, Tang Qianjing et al.. Real-time laser beam quality measurement technique [J]. Chinese J. Lasers, 2007, 34(2):255~258 于永爱,张玲玲,唐前进等。激光束质量实时测量技术[J]. 中国

】 小麦, 赤乓乓, 居前近 寺. 微九米顶重头时 侧重 仅不LJJ. 千 西 激光, 2007, 34(2): 255~258

3 Liu Daizhong, Zhu Jiangqiang, Xu Renfan et al.. Study of beams automatic alignment in four-pass amplifiers [J]. High Power Laser and Particle Beams, 2004,16(5):582~586 刘代中,朱健强,徐仁芳等. 4 程放大光路自动准直系统研究 [J]. 强激光与粒子束, 2004, 16(5): 582~586

- 4 Liu Daizhong, Xu Renfan, Fan Dainyuan et al.. Study of cavity mirror alignment in multi-pass amplifier[J]. High Power Laser and Particle Beams, 2004,16(9):1161~1165 刘代中,徐仁芳,范滇元等.多程放大腔镜准直研究[J]. 强激光 与粒子束,2004,16(9):1161~1165
- 5 Chen Qinghao, Xu Renfang, Peng Zengyun *et al.*. Automatic optical alignment for laser fusion facility[J]. *Acta Optica Sinica*, 1995,**15**(5):531~533 陈庆浩,徐仁芳,彭增云 等. 用于激光核聚变装置的光路自动准
- 直[J]. 光学学报,1995,15(5):531~533
 6 He Wei, Chen Qinghao, Xu Renfang *et al.*. Image transfer based automatic laser alignment technique for laser-fusion facility
 [J]. Acta Optica Sinica, 1999,19(9):1279~1283
 何 为,陈庆浩,徐仁芳 等. 激光核聚变装置中基于像传递的激
- 四 A, 脉 仄 后, 体 L J 寺. 圆 工 核 乘 ② 卷 置 中 基 丁 隊 传 進 时 激 光 准 直 技 术 研 究 [J]. 光 学 学 报 , 1999 , **19**(9) : 1279~1283
- 7 Gao Yanqi, Zhu Baoqiang, Liu Daizhong *et al.*. Study of mathematical model for auto-alignment in four-pass amplifier[J]. *Acta Physica Sinica*,2008,57(11):6992~6996 高妍琦,朱宝强,刘代中等.四程放大自动准直系统数学模型研 究[J]. 物理学报,2008,57(11):6992~6996
- 8 Gao Yanqi, Liu Daizhong, Zhu Baoqiang *et al.*. Precision analysis of new far-field alignment system using grating sampling [J]. *Chinese J. Lasers*,2009,**36**(5):1086~1090 高妍琦,刘代中,朱宝强等. 光栅取样远场监测系统精度分析 [J]. 中国激光,2009,**36**(5):1086~1090
- 9 Ding Li, Liu Daizhong, Gao Yanqi et al.. New far-field detection technique of beams alignment system in high power laser facility [J]. Acta Physica Sinica, 2008, 57(9):5713~5717
 丁 莉,刘代中,高妍琦等.高功率激光装置准直系统新型远场监测技术研究[J].物理学报, 2008,57(9):5713~5717
- 10 P. J. Arsdall, F. W. Holloway, D. L. McGuigan et al.. Nova laser alignment control system [C]. SPIE, 1984, 483:54~64
- 11 S. J. Boege, E. S. Bliss, C. J. Chocol *et al.*. NIF pointing and centering systems and target alignment using 351nm laser source [C]. SPIE, 1997, **3047**: 248~259
- 12 F. R. Holdener, E. Ables, E. S. Bliss *et al.*. Beam control and diagnostic functions in the NIF transport spatial filter [C]. *SPIE*, 1997,3047: 692~699
- 13 Daizhong Liu, Jianqiang Zhu, Renfang Xu et al.. Laser beam automatic alignment in multipass amplifier [J]. Opt. Eng., 2004.43(9): 2066~2070
- 14 Lü Fengnian, Liu Daizhong, Xu Renfang. Performance of image processing in beams automatic alignment system [J]. Optical Technique, 2005, 31(3): 335~337
 吕凤年,刘代中,徐仁芳. 图像处理在光路自动准直系统中的应用[J]. 光学技术, 2005, 31(3): 335~337